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Two parametrizations are presented for the Daubechies wavelets. The first one is based on the
correspondence between the set of multiresolution analysis with compact support orthonormal basis and
the group SU,(2,C[z,z "!]) developed by Pollen. In the second parametrization, emphasis is put on the
regularity condition of the Daubechies wavelets and a solitonic cellular automaton algorithm is intro-
duced to solve the orthonormality conditions characterizing the Daubechies wavelets.

PACS number(s): 05.45.+b, 02.20.—a, 02.30.—f

By now, wavelet and multiresolution analysis are well-
known tools for the study of physical systems where non-
linearities are dominant [1]. The basic equation of the
multiresolution theory is the scaling equation that estab-
lishes a connection between the two symmetries underly-
ing the wavelet theory: dilations and translations. We
start by briefly calling a few basic results that will be use-
ful in stating the aim of the present work within the prop-
er context.

Given a set of coefficients a;, k €Z, the scaling equa-
tion

p(@)=2Fa,p(2g —k), gER (1)
k

and the normalization
qu elg=Sa,=1 (2)
k

define a scaling function ¢(q). For convenience, we will
consider real scaling coefficients in the present work. By
defining the set of translations of the dilated function

@(q),
@x(@)=2/"p(2ig —k) , (3)

the multiresolution analysis of L*(R) consists in the
decomposition of the Hilbert space L*(R) into the chain
of closed subspaces

"V, \CV;CV;;,C -, 4)
where
V,=Span{g;(q), k EZ]} (5)

and such that

Nv;={0}, YV,=L*R). 6)
J J
Multiresolution aims to decompose L%(R) as
LXR)=Vipo X W;, )]
j=jo
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where W; is defined as the orthogonal complement of V;
in V] +1°

Vj+1:Vj@I'ij, (8)

and, for a given scale j, W; is generated by the transla-
tions of the dilated wavelet ¢;(q)=2/ /2(2/q) associated

with the multiresolution analysis:

Wq@)=23 brp(2g—k), gER. 9)
k

The choice b, =(—1)¥@,_, insures that {¢j(q_27jk ),
k €Z} is an orthonormal basis of W;. We refer the
reader to the seminal works of Meyer, Mallat, and Dau-
bechies listed in Ref. [2] for the detailed theory of wavelet
and multiresolution analysis. The sets of coefficients
{a;} and {b;} form a quadrature mirror filter (QMF).
They contain all the information and the properties that
characterize discrete wavelet analysis. A particularly im-
portant class of QMF is associated with orthonormal
bases of compactly supported wavelets. The present Rapid
Communication aims to describe two ways of classifying
that set also known as the Daubechies wavelets family
[3].

A necessary condition for the fulfillment of the ortho-
normality property can be stated as follows. Considering
the unit circle in the complex plane, |z| =1, we define the

entire function F(z) associated with the scaling
coefficients:
F(2)=T3 axz*, with F(1)=1. (10)
k

Orthonormality of the set {¢(qg —n), n €Z} implies the
relation

|[F(2)?+|F(—2)*=1. (11)
In the first approach, we will use the parametrization of
Pollen [4] to obtain all the polynomial solutions of Eq.
(11). Using Lawton’s theorem [5], we will verify that
these solutions always define orthonormal bases. In fact,
as already found in the original work of Daubechies, the
space of solutions of Eq. (11) is highly degenerate and the
Daubechies wavelets correspond to a small subset defined
by the supplementary regularity conditions

F(—1)=F"(—1)= .- =F(—1)=0. (12)
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The larger / is, the more regular is the wavelet. However,
the support of the wavelet also increases. In some sense,
the Daubechies wavelets optimize the regularity for a
given compact support. It is worth recalling the lemma
due to Daubechies that gave the first algorithm for the
computation of the scaling coefficients for her wavelet’s
family. The first part of this lemma states that any entire
polynomial (10) solution of Egs. (11) and (12) is such that

[F(z)]2=[(1+2)/2) ' [(1+z~ ) 2] !

I+j . _
j ](1—z>/(1—z‘1>f

I+1
[ 1—z72

1
X327
j=0
I+1

R

1—z?2

2

z 4z
2

+

2 , (13)

where 7 is an odd polynomial that obeys some constraint
equations that are in general irrelevant since we usually
take /2 =0. In the second part of her lemma, Daubechies
uses the spectral factorization theorem to extract F(z)
from its' modulus given as in Eq. (13). Fixing some phase
freedom present in this computation, she exhibits partic-
ular solutions for the 2/ +2 scaling coefficients a; that
come out from Eq. (13). Frequently used in the applica-
tions of discrete wavelets, those maximal phase solutions
(also called “least symmetric” Daubechies wavelets) are
the cases investigated here. The two different parame-
trizations discussed here characterize either the nonlinear
constraints (11) or the linear conditions (12) on the scal-
ing coefficients. We then identify the Daubechies
wavelets in each parameter space which happens to be of
the same dimensionality equal to /. The main result in
the second approach is the derivation of a solitonic cellu-
lar automaton for describing the scaling coefficients of
the Daubechies wavelets family.

The parametrization of Pollen relies on the correspon-
dence between the orthonormal multiresolution analysis
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two-by-two matrices of the form
| ulz) v(z) 14
D= | _52) @ | (14)

where u (z) and v (z) are polynomials in C[z,z '] and z is
constrained on the unit circle, Pollen noticed that

F(z)=c(1)-g(z?)c(z) , (15)
where c(z) is the unit vector

z

il (16)

c(z)=L—

V2

solves Eq. (11) if and only if g (z) is unitary. This obser-
vation led Pollen to investigate the group SU(2,C[z,z "!])
and more precisely SU,(2,C[z,z ~!]) since we force g (1)
to be the identity matrix. This takes into account the
condition F(1)=1.

Besides this correspondence between orthonormal mul-
tiresolution analysis and the group SU(2,C[z,z ~!]), Pol-
len established the wunique factorization theorem, which
states that any element of this group can be factorized in a
unique way:

g(2)=U(2)U,(z) - U,(2), (17)
with

Uiz)=g, _1(2)gl(2), i=1,2,3,.... (18)

The g;(z) are elements labeled with two angles:

ugi,¢,,_(z) Ugl_,¢,_(z)
8i(2)=gq o (2)=| __ _ , (19)

with

ugl_,,pi(z)=sin2(0,- )z 7' +cos*(6;) ,

and the elements of the group SU,;(2,C[z,z " ']). The ele- ' (20)
ments of this group are the unitary two-by-two matrices Vo o (2)=sin(8;) cos(6; Ye Fi(z—1) .
with components in C[z,z '] and unimodular at z =1. o
Let us recall his analysis. Considering the group of the  Defining v=tan(8), we obtain
J
U,, (2) v,4(2) .
8vol2)= | __ _ , with um,(z)z1+[v2/(1+v2)](z’1-—1), v, 0(2)=[v/(1++})])(z —1e'? . (21)
g —0,,(2) #,,(2)

The number of g’s and gT’s in the product (17) is denoted by J and is called the order of the underlying analysis. For ex-
ample, the wavelet of order 1 (J =1) admits four nonvanishing scaling coefficients associated with g, .

a_ =[viv+e®)]/2(1+v?), ap=[(14+e %)]/2(1++?), a;=(1—e®v)/2(1+v?), a,=[viv—e i9)]/2(1++?) . (22)

When ¢ =0, we recognize here a family of coefficients already mentioned in the early works of Daubechies [2]. We re-
strict our attention to the interval |v| <1 in which the Haar analysis is found at the group identity (v=0) and for

|v|=1.

The factorization (17) leads to an iterative algorithm for the computation of the scaling coefficients from a set of pa-

rameters {v,,i=1,..

() 2\11 7 G—1) i1 e 1)
a?=[1/(1+v)][@{¢ " +(—1)ive j

T (i—1) _ = (j—1)
ay-y’—ais’]

.,J}. Starting with the Haar coefficients a{”’ =a, (v=0), we have the following chain rule:

+V2-a(j_1) ] > (23)

I, -1tk
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ending with the set of a, equal to ay’, with

k=—J,—J+1,---,J,J+1. Let us notice that the j NIARP b

number of nonvanishing coefficients grows with j from 2 mk,j‘—‘go(“Z) I lT+k—11"

(Haar) to 2J +2. Since this work is concerned with real
scaling coefficients, we set ¢, =0 V i.

To check the orthornormality of the multiresolution
analysis described by the coefficients (22), we can use a
lemma of Lawton [5] that relates this property to the
spectrum of the operator A4 defined as

Ai,,:E aj 2 +k% >
k
Lj=—2J—1,—2J,...,2J,2J0 +1 . (24)

Lawton has shown that orthornormality was equivalent
to the presence of a nondegenerate eigenvalue equal to ;.
Such is the case with the coefficients (22), for any v.
Moreover, Pollen’s factorization theorem extends this re-
sult to any multiresolution analysis parametrized by a set
of v;.

Before implementing the second set of equations (12),
in order to compute the v; associated with the Dau-
bechies wavelets, we notice some interesting symmetry
properties of the scaling coefficients:

{vi—>—wv;} then {a;—a,_,},

(25)

i

1 .

These symmetries will be preserved only for the Haar
cases when we consider the set of solutions of the linear
equations (12).

Since we have J parameters we can impose ! =J, Eqgs.
(12). We have carried out the computations numerically
(only cases J =1 and 2 can be solved algebraically) and,
restricting the parameters to the domain |v| <1, we have
found the values plotted in Fig. 1. As the order J is in-
creasing, all the parameters v associated with the Dau-
bechies wavelets start at v=0 (Haar) and converge to-
wards *1, i.e., the Haar case. From the point of view of
the algorithms for wavelet decomposition which are fac-
torizable in the same way as (17), this observation could
reduce the computations involved with high-order mul-
tiresolution analysis. Despite the interesting behavior of
the parameters [6] displayed in Fig. 1, we must admit the
absence of a closed expression for them.

The previous numerical results had suggested the fol-
lowing change of variables on the scaling coefficients. It
is the second parametrization proposed in this work:

1

2J+1

J
SMp, k=—J,—j+1,...,J+1 (26)
j=0

where M is a 2(J +1) X (J +1) matrix of integers verify-
ing the following equations:

a, =

2J +1
M_;;=1, M= J+k |>
(27)
M ;=M ; \—M;_,;—M;_; .
The solution is
M k=1,...,J +1
M= (= 1¥m\_r;, k=—1,...,0 (28)

k=1,...,J+1, j=0,1,...0. (29)

Using simple identities involving binomials, we can easily
prove that expression (26) satisfies the J linear equations
(12) for any value for the J parameters pj,j=1,. R A
The value p,=2"" is fixed by the normalization of the
scaling equation, F(1)=1. The change of variable (26) is
invertible using half of the a;’s:
J+1 J+1
p;i=2"""F mila, =2 =1V m;}la,_, . (30)
k=1 k=1
Surprisingly enough, this relationship recalls the underly-
ing symmetry between a, and a;_, previously noticed in
Eq. (25).
We thus recover a J-fold parametrization of a mul-
tiresolution analysis of order J which makes possible the
factorization of F(z):

F(z)=[(1+2)/2)Y " p(z™ "), (31
with [7]
J
p(2)= (z+1) 7z —1)p; . (32)

ji=0

The parametrization (26) is equally interesting because of
the regularity conditions contained in (26) that make the
linear equations (12) automatically satisfied.

What is left is the computation of the parameters p;
that define the Daubechies wavelets. This amounts to
solving the quadratic equation (11), and for this purpose
we have considered a 1+ 1 cellular automation.

Let us consider a one-dimensional infinite mesh with
the variable p;(¢) 20 attached to the nodes j. The time ¢
is discrete and we take p;(0)=0 Y j as the initial condi-
tion. Given J =20, we distribute ‘“masses” on the mesh
according to the following definition:

0 ifj<Oorj>J,
172

2J +1
J

m;= 1
27

. . (33)
if0<j=<J,

and we define the ‘“energy” & of this system through

1 i

" P e O s
0s] ./ 'y /?//:';/752;
0.6 1 of /) ‘ -

vl ; < >
0.4 1 ; +
0 v

0 2 4 6 8 10 12 14 16 18 20
J

FIG. 1. Parameters v for the Daubechies wavelets [the sign
of v; is (— 1) *1].
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FIG. 2. p(w)for J=9,10,11,12,13. 0.8 r t
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&*=13 ,m}. We have 6=1 for all J. The cellular au-
tomation is now defined for any J by the following equa-

tion:
pj(t+1)2=mj~2—2 2 (-l)kpj_k(t+1)pj+k(t) 5
k=1

p(t+1)=0. (34)

Because of the time dependence in the right-hand side of
(34), this automation does not correspond to the standard
definition of Wolfram’s cellular automata but rather be-
longs to the solitonic cellular automata family introduced
by Park and Steiglitz [8]. We checked numerically that
for all the values of J listed in Fig. 1, this cellular automa-
tion was converging toward a stable state p( ) localized
on the set of nodes where the masses were defined. Fur-
thermore, the values p j(OO) were shown to correspond
exactly to the Daubechies scaling coefficients, up to the
linear transformation (26). Figure 2 exhibits the p( )
configurations for J =9 to 13.

In order to characterize the convergence of the au-
tomaton, we define its “energy”’ by

()= |3 ay 12 (tar()]?, (35)
k

n

where the a;’s are given by (26) at each time step. The
criterion for the convergence towards a stable state is
defined as the limit of &(2) equal to the energy of the sys-
tem, i.e.,, +. As J increases, this convergence requires
more and more time steps. Let us notice that we could
have used the Lawton operator (24) to define the energy
as 4 Tr[ A (¢)]. Right at the beginning, transients and os-
cillations take place during a ‘“relaxation” time ¢,. This
transient regime, of small duration for low values of J,
can be very long for higher order, and metastable states
can even occur during this period. Figure 3 shows the

FIG. 3. log,6 ! vs ¢ for J =20.

case J =20. Numerical simulations, however, tend to
demonstrate that a unique stable state is always reached
after a finite time [6]. It corresponds to the Daubechies
scaling coefficients.

In view of the growing relevance of multiresolution
analysis for the investigation of physical phenomena, the
classification of the discrete wavelets on the basis of their
properties (compactness of the support, regularity, ortho-
normality) becomes an important matter. Looking at the
compactly supported wavelets of Daubechies, we first
have used the Pollen parametrization and we have
identified the least symmetric Daubechies wavelets at
different order in the domain |v| <1. An open problem is
to obtain the more symmetrical wavelets in this parame-
ter space, possibly outside |v| <1. The second parame-
trization introduced in (26) has exhibited a typical non-
linear physical system with the solitonic cellular automa-
ton (34). It is worth mentioning that numerical computa-
tions have shown that the set of equations (34) at t = oo,
i.e.,

Min[j,J — j]

pi=mi=2 3

k=1

are equivalent to the nonlinear conditions (11) and thus
are satisfied by any Daubechies scaling coefficient. How-
ever, it happens that only those that correspond to the
least symmetric ones are obtainable with a cellular au-
tomaton with, and only with, a “solitonic” interacting
term. Needless to say, the cellular automaton (34) by it-
self deserves a more complete analysis in light of the re-
cent works about integrable cellular automata [9].

(Wl)kpjfkpj_;.k s Vj 5 (36)
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